Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1342210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318186

RESUMO

This study aimed to assess the impact of dietary selenoprotein extracts from Cardamine hupingshanensis (SePCH) on the growth, hematological parameters, selenium metabolism, immune responses, antioxidant capacities, inflammatory reactions and intestinal barrier functions in juvenile largemouth bass (Micropterus salmoides). The base diet was supplemented with four different concentrations of SePCH: 0.00, 0.30, 0.60 and 1.20 g/Kg (actual selenium contents: 0.37, 0.59, 0.84 and 1.30 mg/kg). These concentrations were used to formulate four isonitrogenous and isoenergetic diets for juvenile largemouth bass during a 60-day culture period. Adequate dietary SePCH (0.60 and 1.20 g/Kg) significantly increased weight gain and daily growth rate compared to the control groups (0.00 g/Kg). Furthermore, 0.60 and 1.20 g/Kg SePCH significantly enhanced amounts of white blood cells, red blood cells, platelets, lymphocytes and monocytes, and levels of hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin in the hemocytes. In addition, 0.60 and 1.20 g/Kg SePCH increased the mRNA expression levels of selenocysteine lyase, selenophosphate synthase 1, 15 kDa selenoprotein, selenoprotein T2, selenoprotein H, selenoprotein P and selenoprotein K in the fish liver and intestine compared to the controls. Adequate SePCH not only significantly elevated the activities of antioxidant enzymes (Total superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase), the levels of total antioxidant capacity and glutathione, while increased mRNA transcription levels of NF-E2-related factor 2, Cu/Zn-superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase. However, adequate SePCH significantly decreased levels of malondialdehyde and H2O2 and the mRNA expression levels of kelch-like ECH-associated protein 1a and kelch-like ECH-associated protein 1b in the fish liver and intestine compared to the controls. Meanwhile, adequate SePCH markedly enhanced the levels of immune factors (alkaline phosphatase, acid phosphatase, lysozyme, complement component 3, complement component 4 and immunoglobulin M) and innate immune-related genes (lysozyme, hepcidin, liver-expressed antimicrobial peptide 2, complement component 3 and complement component 4) in the fish liver and intestine compared to the controls. Adequate SePCH reduced the levels of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin 8, interleukin 1ß and interferon γ), while increasing transforming growth factor ß1 levels at both transcriptional and protein levels in the liver and intestine. The mRNA expression levels of mitogen-activated protein kinase 13 (MAPK 13), MAPK14 and nuclear factor kappa B p65 were significantly reduced in the liver and intestine of fish fed with 0.60 and 1.20 g/Kg SePCH compared to the controls. Histological sections also demonstrated that 0.60 and 1.20 g/Kg SePCH significantly increased intestinal villus height and villus width compared to the controls. Furthermore, the mRNA expression levels of tight junction proteins (zonula occludens-1, zonula occludens-3, Claudin-1, Claudin-3, Claudin-5, Claudin-11, Claudin-23 and Claudin-34) and Mucin-17 were significantly upregulated in the intestinal epithelial cells of 0.60 and 1.20 g/Kg SePCH groups compared to the controls. In conclusion, these results found that 0.60 and 1.20 g/Kg dietary SePCH can not only improve growth, hematological parameters, selenium metabolism, antioxidant capacities, enhance immune responses and intestinal functions, but also alleviate inflammatory responses. This information can serve as a useful reference for formulating feeds for largemouth bass.


Assuntos
Bass , Cardamine , Selênio , Animais , Antioxidantes/metabolismo , Catalase , Bass/genética , Muramidase/metabolismo , Selênio/farmacologia , Cardamine/genética , Cardamine/metabolismo , Glutationa Redutase/genética , Peróxido de Hidrogênio , Intestinos , Selenoproteínas , RNA Mensageiro/genética , Glutationa Peroxidase/genética , Superóxido Dismutase/genética , Claudinas
2.
Biol Trace Elem Res ; 202(2): 527-537, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37233925

RESUMO

Selenium-enriched Cardamine violifolia (SEC), a cruciferous plant, exerts excellent antioxidant and anti-inflammatory capacity, but its effect on hepatic function is unclear. This study investigated the effect and potential mechanism of SEC on hepatic injury induced by lipopolysaccharide (LPS). Twenty-four weaned piglets were randomly allotted to treatment with SEC (0.3 mg/kg Se) and/or LPS (100 µg/kg). After 28 days of the trial, pigs were injected with LPS to induce hepatic injury. These results indicated that SEC supplementation attenuated LPS-induced hepatic morphological injury and reduced aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities in plasma. SEC also inhibited the expression of pro-inflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) after the LPS challenge. In addition, SEC improved hepatic antioxidant capacity via enhancing glutathione peroxidase (GSH-Px) activity and decreasing malondialdehyde (MDA) concentration. Moreover, SEC downregulated the mRNA expression of hepatic myeloid differentiation factor 88 (MyD88) and nucleotide-binding oligomerization domain proteins 1 (NOD1) and its adaptor molecule receptor interacting protein kinase 2 (RIPK2). SEC also alleviated LPS-induced hepatic necroptosis by inhibiting RIPK1, RIPK3, and mixed-lineage kinase domain-like (MLKL) expression. These data suggest that SEC potentially mitigates LPS-induced hepatic injury via inhibiting Toll-like receptor 4 (TLR4)/NOD2 and necroptosis signaling pathways in weaned piglets.


Assuntos
Cardamine , Hepatopatias , Selênio , Suínos , Animais , Lipopolissacarídeos , Selênio/farmacologia , Receptor 4 Toll-Like/metabolismo , Cardamine/metabolismo , Antioxidantes/farmacologia , Necroptose , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
3.
Curr Biol ; 33(14): 2977-2987.e6, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37453425

RESUMO

How genetically regulated growth shapes organ form is a key problem in developmental biology. Here, we investigate this problem using the leaflet-bearing complex leaves of Cardamine hirsuta as a model. Leaflet development requires the action of two growth-repressing transcription factors: REDUCED COMPLEXITY (RCO), a homeodomain protein, and CUP-SHAPED COTYLEDON2 (CUC2), a NAC-domain protein. However, how their respective growth-repressive actions are integrated in space and time to generate complex leaf forms remains unknown. By using live imaging, we show that CUC2 and RCO are expressed in an interspersed fashion along the leaf margin, creating a distinctive striped pattern. We find that this pattern is functionally important because forcing RCO expression in the CUC2 domain disrupts auxin-based marginal patterning and can abolish leaflet formation. By combining genetic perturbations with time-lapse imaging and cellular growth quantifications, we provide evidence that RCO-mediated growth repression occurs after auxin-based leaflet patterning and in association with the repression of cell proliferation. Additionally, through the use of genetic mosaics, we show that RCO is sufficient to repress both cellular growth and proliferation in a cell-autonomous manner. This mechanism of growth repression is different to that of CUC2, which occurs in proliferating cells. Our findings clarify how the two growth repressors RCO and CUC2 coordinate to subdivide developing leaf primordia into distinct leaflets and generate the complex leaf form. They also indicate different relationships between growth repression and cell proliferation in the patterning and post-patterning stages of organogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cardamine , Cardamine/genética , Cardamine/metabolismo , Arabidopsis/metabolismo , Folhas de Planta , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
4.
Sci China Life Sci ; 66(9): 2099-2111, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36814047

RESUMO

Sepsis is a life-threatening organ dysfunction caused by the dysregulated response of the host to an infection, and treatments are limited. Recently, a novel selenium source, selenium-enriched Cardamine violifolia (SEC) has attracted much attention due to its anti-inflammatory and antioxidant properties, but little is known about its role in the treatment of sepsis. Here, we found that SEC alleviated LPS-induced intestinal damage, as indicated by improved intestinal morphology, and increased disaccharidase activity and tight junction protein expression. Moreover, SEC ameliorated the LPS-induced release of pro-inflammatory cytokines, as indicated by decreased IL-6 level in the plasma and jejunum. Moreover, SEC improved intestinal antioxidant functions by regulating oxidative stress indicators and selenoproteins. In vitro, TNF-α-challenged IPEC-1 cells were examined and showed that selenium-enriched peptides, which are the main functional components extracted from Cardamine violifolia (CSP), increased cell viability, decreased lactate dehydrogenase activity and improved cell barrier function. Mechanistically, SEC ameliorated LPS/TNF-α-induced perturbations in mitochondrial dynamics in the jejunum and IPEC-1 cells. Moreover, CSP-mediated cell barrier function is primarily dependent on the mitochondrial fusion protein MFN2 but not MFN1. Taken together, these results indicate that SEC mitigates sepsis-induced intestinal injury, which is associated with modulating mitochondrial fusion.


Assuntos
Cardamine , Selênio , Sepse , Animais , Suínos , Selênio/farmacologia , Selênio/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cardamine/química , Cardamine/metabolismo , Dinâmica Mitocondrial , Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Sepse/tratamento farmacológico
5.
BMC Plant Biol ; 22(1): 491, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36253724

RESUMO

BACKGROUND: ATP sulfurylase (ATPS) is a crucial enzyme for the selenate assimilation pathway in plants. RESULTS: In this study, genome-wide and comparative analyses of ATPS in Cardamine hupingshanensis, including sequence and structural analyses, were performed. The expression of ChATPS gene family members in C. hupingshanensis under selenium (Se) stress was also investigated, and our results suggest that ChATPS1-2 play key roles in the response to Se stress. Nine ATPS genes were found from C. hupingshanensis, which share highly conserved sequences with ATPS from Arabidopsis thaliana. In addition, we performed molecular docking of ATP sulfurylase in complex with compounds ATP, selenate, selenite, sulfate, and sulfite. ChAPS3-1 was found to have stronger binding energies with all compounds tested. Among these complexes, amino acid residues Arg, Gly, Ser, Glu, and Asn were commonly present. CONCLUSION: Our study reveals the molecular mechanism of C. hupingshanensis ATP sulfurylase interacting with selenate, which is essential for understanding selenium assimilation. This information will guide further studies on the function of the ChATPS gene family in the selenium stress response and lay the foundation for the selenium metabolic pathway in higher plants.


Assuntos
Arabidopsis , Cardamine , Selênio , Trifosfato de Adenosina , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Cardamine/metabolismo , Simulação de Acoplamento Molecular , Ácido Selênico , Ácido Selenioso/metabolismo , Selênio/metabolismo , Sulfato Adenililtransferase/química , Sulfato Adenililtransferase/genética , Sulfato Adenililtransferase/metabolismo , Sulfatos/metabolismo , Sulfitos/metabolismo
6.
Food Chem ; 395: 133547, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35780669

RESUMO

The antioxidant properties of Se-containing peptides from Cardamine enshiensis (SeCPPs) and their impact on gut microbiota were studied in d-galactose (d-gal)- injected mice and antibiotic-treated mice. The structures of SeCPPs were identified by UPLC-Q-Extractive Orbitrap MS. In d-gal ageing mice, SeCPPs were associated with significantly decreased acetyl cholinesterase (AchE) activity, malondialdehyde (MDA) content, increased glutathione peroxidase (GSH-Px) activity, downregulated tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) levels (p < 0.05), and improved memory. In antibiotic-treated mice, SeCPPs were associated with reduced Proteobacteria and evaluated Akkermansia abundances (p < 0.01). Eighty-five Se-containing peptides were identified in SeCPPs. Peptides such as RV-SeM-I, RA-SeM-T and R-SeC-K showed low binding energy with 1,1-diphenyl-2-picrylhydrazyl (DPPH), and their binding affinities were confirmed by molecular docking. Overall, compared with Na2SeO3 and SeMet, SeCPPs showed superior antioxidant activity via their association with higher antioxidant enzyme activity, scavenging free radical properties and gut microbiome modulation.


Assuntos
Cardamine , Microbioma Gastrointestinal , Selênio , Animais , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Cardamine/metabolismo , Galactose/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Estresse Oxidativo , Peptídeos/metabolismo , Selênio/farmacologia
8.
J Nutr ; 152(9): 2072-2079, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35728044

RESUMO

BACKGROUND: Supernutrition of selenium (Se) in an effort to produce Se-enriched meat may inadvertently cause lipid accumulation. Se-enriched Cardamine violifolia (SeCv) contains >80% of Se in organic forms. OBJECTIVES: This study was to determine whether feeding chickens a high dose of SeCv could produce Se-biofortified muscle without altering their lipid metabolism. METHODS: Day-old male broilers were allocated to 4 groups (6 cages/group and 6 chicks/cage) and were fed either a corn-soy base diet (BD, 0.13-0.15 mg Se/kg), the BD plus 0.5 mg Se/kg as sodium selenite (SeNa) or as SeCv, or the BD plus a low-Se Cardamine violifolia (Cv, 0.20-0.21mg Se/kg). At week 6, concentrations of Se and lipid and expression of selenoprotein and lipid metabolism-related genes were determined in the pectoral muscle and liver. RESULTS: The 4 diets showed no effects on growth performance of broilers. Compared with the other 3 diets, SeCv elevated (P < 0.05) Se concentrations in the pectoral muscle and liver by 14.4-127% and decreased (P < 0.05) total cholesterol concentrations by 12.5-46.7% and/or triglyceride concentrations by 28.8-31.1% in the pectoral muscle and/or liver, respectively. Meanwhile, SeCv enhanced (P < 0.05) muscular α-linolenic acid (80.0%) and hepatic arachidonic acid (58.3%) concentrations compared with SeNa and BD, respectively. SeCv downregulated (P < 0.05) the cholesterol and triglyceride synthesis-related proteins (sterol regulatory element binding transcription factor 2 and diacylglycerol O-acyltransferase 2) and upregulated (P < 0.05) hydrolysis and ß-oxidation of fatty acid-related proteins (lipoprotein lipase, fatty acid binding protein 1, and carnitine palmitoyltransferase 1A), as well as selenoprotein P1 and thioredoxin reductase activity in the pectoral muscle and/or liver compared with SeNa. CONCLUSIONS: Compared with SeNa, SeCv effectively raised Se and reduced lipids in the liver and muscle of broilers. The effect was mediated through the regulation of the cholesterol and triglyceride biosynthesis and utilization-related genes.


Assuntos
Cardamine , Selênio , Ração Animal , Animais , Cardamine/metabolismo , Galinhas/metabolismo , Colesterol/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Lipídeos/farmacologia , Fígado/metabolismo , Masculino , Músculos Peitorais/metabolismo , Selenoproteínas/genética , Triglicerídeos/metabolismo
9.
Metallomics ; 12(12): 2032-2048, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33165451

RESUMO

Low molecular weight selenium containing metabolites in the leaves of the selenium hyperaccumulator Cardamine violifolia (261 mg total Se per kg d.w.) were targeted in this study. One dimensional cation exchange chromatography coupled to ICP-MS was used for purification and fractionation purposes prior to LC-Unispray-QTOF-MS analysis. The search for selenium species in full scan spectra was assisted with an automated mass defect based filtering approach. Besides selenocystathionine, selenohomocystine and its polyselenide derivative, a total number of 35 water soluble selenium metabolites other than selenolanthionine were encountered, including 30 previously unreported compounds. High occurrence of selenium containing hexoses was observed, together with the first assignment of N-glycoside derivatives of selenolanthionine. Quantification of the most abundant selenium species, selenolanthionine, was carried out with an ion pairing LC - post column isotope dilution ICP-MS setup, which revealed that this selenoamino acid accounted for 30% of the total selenium content of the leaf (78 mg (as Se) per kg d.w.).


Assuntos
Cardamine/metabolismo , Cistationina/análogos & derivados , Homocistina/análogos & derivados , Compostos Organosselênicos/metabolismo , Selênio/metabolismo , Alanina/análogos & derivados , Alanina/análise , Alanina/metabolismo , Cardamine/química , Cistationina/análise , Cistationina/metabolismo , Homocistina/análise , Homocistina/metabolismo , Compostos Organosselênicos/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Selênio/análise , Solubilidade , Água/química
10.
BMC Plant Biol ; 20(1): 492, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109081

RESUMO

BACKGROUND: Cardamine violifolia, native to China, is one of the selenium (Se) hyperaccumulators. The mechanism of Se metabolism and tolerance remains unclear, and only limited genetic information is currently available. Therefore, we combined a PacBio single-molecule real-time (SMRT) transcriptome library and the Illumina RNA-seq data of sodium selenate (Na2SeO4)-treated C. violifolia to further reveal the molecular mechanism of Se metabolism. RESULTS: The concentrations of the total, inorganic, and organic Se in C. violifolia seedlings significantly increased as the Na2SeO4 treatment concentration increased. From SMRT full-length transcriptome of C. violifolia, we obtained 26,745 annotated nonredundant transcripts, 14,269 simple sequence repeats, 283 alternative splices, and 3407 transcription factors. Fifty-one genes from 134 transcripts were identified to be involved in Se metabolism, including transporter, assimilatory enzyme, and several specific genes. Analysis of Illumina RNA-Seq data showed that a total of 948 differentially expressed genes (DEGs) were filtered from the four groups with Na2SeO4 treatment, among which 11 DEGs were related to Se metabolism. The enrichment analysis of KEGG pathways of all the DEGs showed that they were significantly enriched in five pathways, such as hormone signal transduction and plant-pathogen interaction pathways. Four genes related to Se metabolism, adenosine triphosphate sulfurase 1, adenosine 5'-phosphosulfate reductase 3, cysteine (Cys) desulfurase 1, and serine acetyltransferase 2, were regulated by lncRNAs. Twenty potential hub genes (e.g., sulfate transporter 1;1, Cys synthase, methionine gamma-lyase, and Se-binding protein 1) were screened and identified to play important roles in Se accumulation and tolerance in C. violifolia as concluded by weighted gene correlation network analysis. Based on combinative analysis of expression profiling and annotation of genes as well as Se speciation and concentration in C. violifolia under the treatments with different Na2SeO4 concentrations, a putative Se metabolism and assimilation pathway in C. violifolia was proposed. CONCLUSION: Our data provide abundant information on putative gene transcriptions and pathway involved in Se metabolism of C. violifolia. The findings present a genetic resource and provide novel insights into the mechanism of Se hyperaccumulation in C. violifolia.


Assuntos
Cardamine/genética , Genes de Plantas/genética , Redes e Vias Metabólicas/genética , Selênio/metabolismo , Cardamine/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Análise de Sequência de RNA , Transcriptoma/genética
11.
Sci Total Environ ; 703: 135041, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767332

RESUMO

Cardamine violifolia (family Brassicaceae) is the first discovered selenium hyperaccumulator from the genus Cardamine with unique properties in terms of selenium accumulation, i.e., high abundance of selenolanthionine. In our study, a fully comprehensive experiment was conducted with the comparison of a non-hyperaccumulator Cardamine species, Cardamine pratensis, covering growth characteristics, chlorophyll fluorescence, spatial selenium/sulfur distribution patterns through elemental analyses (synchrotron-based X-Ray Fluorescence and ICP-OES) and speciation data through selenium K-edge micro X-ray absorption near-edge structure analysis (µXANES) and strong cation exchange (SCX)-ICP-MS. The results revealed remarkable differences in contrast to other selenium hyperaccumulators as neither Cardamine species showed evidence of growth stimulation by selenium. Also, selenite uptake was not inhibited by phosphate for either of the Cardamine species. Sulfate inhibited selenate uptake, but the two Cardamine species did not show any difference in this respect. However, µXRF derived speciation maps and selenium/sulfur uptake characteristics provided results that are similar to other formerly reported hyperaccumulator and non-hyperaccumulator Brassicaceae species. µXANES showed organic selenium, "C-Se-C", in seedlings of both species and also in mature C. violifolia plants. In contrast, selenate-supplied mature C. pratensis contained approximately half "C-Se-C" and half selenate. SCX-ICP-MS data showed evidence of the lack of selenocystine in any of the Cardamine plant extracts. Thus, C. violifolia shows clear selenium-related physiological and biochemical differences compared to C. pratensis and other selenium hyperaccumulators.


Assuntos
Cardamine/metabolismo , Selênio/metabolismo , Poluentes do Solo/metabolismo , Brassicaceae
12.
Curr Biol ; 29(24): 4183-4192.e6, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31761704

RESUMO

Mechanisms through which the evolution of gene regulation causes morphological diversity are largely unclear. The tremendous shape variation among plant leaves offers attractive opportunities to address this question. In cruciferous plants, the REDUCED COMPLEXITY (RCO) homeodomain protein evolved via gene duplication and acquired a novel expression domain that contributed to leaf shape diversity. However, the molecular pathways through which RCO regulates leaf growth are unknown. A key question is to identify genome-wide transcriptional targets of RCO and the DNA sequences to which RCO binds. We investigate this question using Cardamine hirsuta, which has complex leaves, and its relative Arabidopsis thaliana, which evolved simple leaves through loss of RCO. We demonstrate that RCO directly regulates genes controlling homeostasis of the hormone cytokinin to repress growth at the leaf base. Elevating cytokinin signaling in the RCO expression domain is sufficient to both transform A. thaliana simple leaves into complex ones and partially bypass the requirement for RCO in C. hirsuta complex leaf development. We also identify RCO as its own target gene. RCO directly represses its own transcription via an array of low-affinity binding sites, which evolved after RCO duplicated from its progenitor sequence. This autorepression is required to limit RCO expression. Thus, evolution of low-affinity binding sites created a negative autoregulatory loop that facilitated leaf shape evolution by defining RCO expression and fine-tuning cytokinin activity. In summary, we identify a transcriptional mechanism through which conflicts between novelty and pleiotropy are resolved during evolution and lead to morphological differences between species.


Assuntos
Citocininas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cardamine/genética , Cardamine/metabolismo , Citocininas/genética , Evolução Molecular , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Homeostase , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
13.
J Chem Ecol ; 45(7): 638-648, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31227972

RESUMO

Although the production of phytohormones has been commonly associated with production of plant defence and stress-related traits, few studies have simultaneously investigated this phenomenon across several plant species that grow along large-scale ecological gradients. To address these knowledge gaps, we performed a common garden experiment with six Cardamine species, which collectively encompass an elevational gradient of 2000 m. We quantified constitutive and Pieris brassicae caterpillars-induced phytohormones and chemical defences in leaves. We found a correlated expression of phytohormone production and the subsequent induction of chemical defences, and this correlated expression reduced herbivore performance. Furthermore, we found that abiotic conditions associated with the optimal elevation range of each species influenced the production of phytohormones and chemical defences, as well as plant growth and productivity. In particular, we found that plant species adapted to milder abiotic conditions at low elevations grew faster, were more productive and produced greater levels of chemical defences. In contrast, plant species adapted to harsher abiotic conditions at high elevations tended to produce greater levels of defence-related oxylipins. Overall, these findings highlight the importance of disentangling the role of phytohormones in mediating plant adaptations to shifting biotic and abiotic conditions.


Assuntos
Cardamine/química , Glucosinolatos/química , Himenópteros/fisiologia , Reguladores de Crescimento de Plantas/química , Animais , Cardamine/metabolismo , Cromatografia Líquida de Alta Pressão , Glucosinolatos/farmacologia , Herbivoria , Interações Hospedeiro-Parasita/efeitos dos fármacos , Himenópteros/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Espectrometria de Massas em Tandem
14.
Sci Rep ; 8(1): 2789, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434336

RESUMO

Selenium (Se) is an essential mineral element for animals and humans. Cardamine hupingshanensis (Brassicaceae), found in the Wuling mountain area of China, has been identified as a novel Se hyperaccumulator plant. However, the mechanism for selenium tolerance in Cardamine plants remains unknown. In this study, two cDNA libraries were constructed from seedlings of C. hupingshanensis treated with selenite. Approximately 100 million clean sequencing reads were de novo assembled into 48,989 unigenes, of which 39,579 and 33,510 were expressed in the roots and leaves, respectively. Biological pathways and candidate genes involved in selenium tolerance mechanisms were identified. Differential expression analysis identified 25 genes located in four pathways that were significantly responsive to selenite in C. hupingshanensis seedlings. The results of RNA sequencing (RNA-Seq) and quantitative real-time PCR (RT-qPCR) confirmed that storage function, oxidation, transamination and selenation play very important roles in the selenium tolerance in C. hupingshanensis. Furthermore, a different degradation pathway synthesizing malformed or deformed selenoproteins increased selenium tolerance at different selenite concentrations. This study provides novel insights into the mechanisms of selenium tolerance in a hyperaccumulator plant, and should serve as a rich gene resource for C. hupingshanensis.


Assuntos
Cardamine/genética , Selênio/metabolismo , Cardamine/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genômica/métodos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Ácido Selenioso/metabolismo , Análise de Sequência de RNA , Transcriptoma/genética
15.
Development ; 145(1)2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29158439

RESUMO

A clear example of interspecific variation is the number of root cortical layers in plants. The genetic mechanisms underlying this variability are poorly understood, partly because of the lack of a convenient model. Here, we demonstrate that Cardamine hirsuta, unlike Arabidopsis thaliana, has two cortical layers that are patterned during late embryogenesis. We show that a miR165/6-dependent distribution of the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) transcription factor PHABULOSA (PHB) controls this pattern. Our findings reveal that interspecies variation in miRNA distribution can determine differences in anatomy in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cardamine/metabolismo , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/anatomia & histologia , Cardamine/anatomia & histologia , Raízes de Plantas/anatomia & histologia
16.
New Phytol ; 216(2): 549-561, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28098947

RESUMO

A conserved genetic toolkit underlies the development of diverse floral forms among angiosperms. However, the degree of conservation vs divergence in the configuration of these gene regulatory networks is less clear. We addressed this question in a parallel genetic study between the closely related species Arabidopsis thaliana and Cardamine hirsuta. We identified leafy (lfy) and apetala1 (ap1) alleles in a mutant screen for floral regulators in C. hirsuta. C. hirsuta lfy mutants showed a complete homeotic conversion of flowers to leafy shoots, mimicking lfy ap1 double mutants in A. thaliana. Through genetic and molecular experiments, we showed that AP1 activation is fully dependent on LFY in C. hirsuta, by contrast to A. thaliana. Additionally, we found that LFY influences heteroblasty in C. hirsuta, such that loss or gain of LFY function affects its progression. Overexpression of UNUSUAL FLORAL ORGANS also alters C. hirsuta leaf shape in an LFY-dependent manner. We found that LFY and AP1 are conserved floral regulators that act nonredundantly in C. hirsuta, such that LFY has more obvious roles in floral and leaf development in C. hirsuta than in A. thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cardamine/metabolismo , Sequência Conservada , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Cardamine/genética , Cardamine/ultraestrutura , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Mutação/genética , Folhas de Planta/anatomia & histologia , Brotos de Planta/fisiologia , Especificidade da Espécie
17.
Curr Opin Plant Biol ; 34: 114-121, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27825067

RESUMO

A key question in biology is how the endless diversity of forms found in nature evolved. Understanding the cellular basis of this diversity has been aided by advances in non-model experimental systems, quantitative image analysis tools, and modeling approaches. Recent work in plants highlights the importance of cell wall and cuticle modifications for the emergence of diverse forms and functions. For example, explosive seed dispersal in Cardamine hirsuta depends on the asymmetric localization of lignified cell wall thickenings in the fruit valve. Similarly, the iridescence of Hibiscus trionum petals relies on regular striations formed by cuticular folds. Moreover, NAC transcription factors regulate the differentiation of lignified xylem vessels but also the water-conducting cells of moss that lack a lignified secondary cell wall, pointing to the origin of vascular systems. Other novel forms are associated with modified cell growth patterns, including oriented cell expansion or division, found in the long petal spurs of Aquilegia flowers, and the Sarracenia purpurea pitcher leaf, respectively. Another good example is the regulation of dissected leaf shape in C. hirsuta via local growth repression, controlled by the REDUCED COMPLEXITY HD-ZIP class I transcription factor. These studies in non-model species often reveal as much about fundamental processes of development as they do about the evolution of form.


Assuntos
Parede Celular/metabolismo , Aquilegia/metabolismo , Cardamine/metabolismo , Flores/metabolismo , Hibiscus/metabolismo , Proteínas de Plantas/metabolismo , Sarraceniaceae/metabolismo , Fatores de Transcrição/metabolismo
18.
Plant J ; 83(4): 732-42, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26119568

RESUMO

The evolution of plant reproductive strategies has led to a remarkable diversity of structures, especially within the flower, a structure characteristic of the angiosperms. In flowering plants, sexual reproduction depends notably on the development of the gynoecium that produces and protects the ovules. In Arabidopsis thaliana, ovule initiation is promoted by the concerted action of auxin with CUC1 (CUP-SHAPED COTYLEDON1) and CUC2, two genes that encode transcription factors of the NAC family (NAM/ATAF1,2/CUC). Here we highlight an additional role for CUC2 and CUC3 in Arabidopsis thaliana ovule separation. While CUC1 and CUC2 are broadly expressed in the medial tissue of the gynoecium, CUC2 and CUC3 are expressed in the placental tissue between developing ovules. Consistent with the partial overlap between CUC1, CUC2 and CUC3 expression patterns, we show that CUC proteins can physically interact, both in yeast cells and in planta. We found that the cuc2;cuc3 double mutant specifically harbours defects in ovule separation, producing fused seeds that share the seed coat, and suggesting that CUC2 and CUC3 promote ovule separation in a partially redundant manner. Functional analyses show that CUC transcription factors are also involved in ovule development in Cardamine hirsuta. Additionally we show a conserved expression pattern of CUC orthologues between ovule primordia in other phylogenetically distant species with different gynoecium architectures. Taken together these results suggest an ancient role for CUC transcription factors in ovule separation, and shed light on the conservation of mechanisms involved in the development of innovative structures.


Assuntos
Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cardamine/crescimento & desenvolvimento , Cardamine/metabolismo , Regulação da Expressão Gênica de Plantas , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
ScientificWorldJournal ; 2014: 108562, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25478582

RESUMO

A novel selenium- (Se-) hyperaccumulating plant, Cardamine hupingshanesis, accumulating Se as a form of SeCys2, was discovered in Enshi, Hubei, China, which could not be explained by present selenocysteine methyltransferase (SMT) theory. However, it is interesting to investigate if rhizosphere bacteria play some roles during SeCys2 accumulation. Here, one Se-tolerant rhizosphere strain, Microbacterium oxydans, was isolated from C. hupingshanesis. Phylogenetic analysis and 16S rRNA gene sequences determined the strain as a kind of Gram positive bacillus and belonged to the family Brevibacterium frigoritolerans. Furthermore, Se tolerance test indicated the strain could grow in extreme high Se level of 15.0 mg Se L(-1). When exposed to 1.5 mg Se L(-1), SeCys2 was the predominant Se species in the bacteria, consistent with the Se species in C. hupingshanesis. This coincidence might reveal that this strain played some positive effect in SeCys2 accumulation of C. hupingshanesis. Moreover, when exposed to 1.5 mg Se L(-1) or 15.0 mg Se L(-1), As absorption diminished in the logarithmic phase. In contrast, As absorption increased when exposed to 7.5 mg Se L(-1), indicating As metabolism processes could be affected by Se on this strain. The present study provided a sight on the role of rhizosphere bacteria during Se accumulation for Se-hyperaccumulating plant.


Assuntos
Brevibacterium/metabolismo , Cardamine/genética , Filogenia , Selênio/metabolismo , Brevibacterium/efeitos dos fármacos , Cardamine/efeitos dos fármacos , Cardamine/metabolismo , Metiltransferases/metabolismo , RNA Ribossômico 16S/genética , Rizosfera , Selênio/toxicidade
20.
Environ Monit Assess ; 186(7): 4051-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24519638

RESUMO

In a preliminary study, we found that the cadmium (Cd) concentrations in shoots of the winter farmland weeds Cardamine hirsuta Linn. and Gnaphalium affine D. Don exceeded the critical value of a Cd-hyperaccumulator (100 mg kg(-1)), indicating that these two farmland weeds might be Cd-hyperaccumulators. In this study, we grew these species in soil containing various concentrations of Cd to further evaluate their Cd accumulation characteristics. The biomasses of C. hirsuta and G. affine decreased with increasing Cd concentrations in the soil, while the root/shoot ratio and the Cd concentrations in shoot tissues increased. The Cd concentrations in shoots of C. hirsuta and G. affine reached 121.96 and 143.91 mg kg(-1), respectively, at the soil Cd concentration of 50 mg kg(-1). Both of these concentrations exceeded the critical value of a Cd-hyperaccumulator (100 mg kg(-1)). The shoot bioconcentration factors of C. hirsuta and G. affine were greater than 1. The translocation factor of C. hirsuta was less than 1 and that of G. affine was greater than 1. These findings indicated that C. hirsuta is a Cd-accumulator and G. affine is Cd-hyperaccumulator. Both plants are distributed widely in the field, and they could be used to remediate Cd-contaminated farmland soil in winter.


Assuntos
Cádmio/metabolismo , Cardamine/metabolismo , Gnaphalium/metabolismo , Plantas Daninhas/metabolismo , Poluentes do Solo/metabolismo , Agricultura , Biodegradação Ambiental , Biomassa , Cádmio/análise , Cardamine/química , Monitoramento Ambiental , Gnaphalium/química , Raízes de Plantas , Plantas Daninhas/química , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...